## Cervical Spine - Aliqnment



## Spinal Digitizer

Biomechanical Measurements

By

Tariq J. Faridi, Intern - Loma Linda University - Fall
Copyright 1990, 2013.

## Coronal Plane Alignment

1. Are the atlanto-axial facet joint spaces of equal height?
2. Is the dens symmetrically placed between the lat. masses of atlas?
3. Is spinous process of C 2 centrally located?
4. Are the lateral masses of Atlas of equal height?


## Sacjital Alichment <br> a Gephalecraph

3. Interspinous spaces should not be less than 8mm each.


Odontoid plane
Inf. endplate of C2 should "face forward"

1. Cranio-vertebral angle should not be less than $96^{\circ}$ or over $106^{\circ}$
2. Line drawn between posterior borders of C2-C7 should fall behind all cervical vertebrael bodies

## Sacittal Alichment <br> a Gephalograph


2. Line drawn between posterior borders of C2-C7 should fall behind all cervical vertebrael bodies

## Sacittal Alichment <br> a Gephalograph


2. Line drawn between posterior borders of C2-C7 should fall behind all cervical vertebrael bodies

## Sacittal Alichment <br> a Gephalograph


2. Line drawn between posterior borders of C2-C7 should fall behind all cervical vertebrael bodies

## Cervical Lordosis

## Cobb Method (norm= $30^{\circ}$ )

Significance of Inferior Endplate of C2,


According to Cobb Method ; a Kyphosis of $8^{\circ}$

## Whiplash - Reversed Lordosis



1. McGreger plane Hot horizontal
2. Odonteid plane Directed anteriorly
3. Graniovertebral angle $68^{\circ}$ (instead of $96-1 \odot 6^{\circ}$ )
4. Spinous proc. GI and 2 No sub-cranial spaces
5. Inferior endplates $\mathbf{C 2}$ and 7 $20^{\circ}$ hyphosis, instead of 30$40^{\circ}$
of lordosis
6. G2-7 line

All intervening vertebrae behind the line


## Central Gravity Line



## The 3 Lines and Canal Width

Width should be at least 16 mm at C41<br>13 mm at C3<br>12 mm at C4-C7n

## Dynamic Alignment Integrity




RA; paresthesias with flexion. Extension film= retrolisthesis. Flexion= predental space increases to 7 mm . Reversed curve for lower cervical and 'kink ' on

## Coronal Alignment

## SBR CO (occiput)

## SBR C2

## SBR (?) C3

SBR C4-7
Note also R rotation (tracheal shadow)


## C3/4 joint - Axial CT Scan (bone window)



The facet of the vertebra above is 'on the outside' Think of tiles on a roof


Jumped facet/ Hamburger sign: A 45-year-old man - motor vehicle accident. Top axial CT scan: facet joint (arrows) with the normal hamburger appearance.

## Thoracic Spine - Alignment

## Thoracic Kyphosis



## Thoracic Cage Dimension

Pes Excavatum


## Structural/ Functional

Structural does not correct on sidebending towards the convexity


## Degenerative scoliosis - instability

## R. convex lumbar

 curve-Top vertebra of curve -Bottom vertebra

- Cobb angle $=33^{\circ}$
(probably much greater in standing)


## Scoliosis - Cobb :

(L. convex thoraco-lumbar curve)
-Top vertebra of curve (uppermost vert. tilting towards concavity)
-Bottom vertebra
(lowermost vert. tilting towards concavity

- Two perpendicular lines drawn from these lines. Where the two lines intersect $=38^{\circ}$
-Apex at T11


## R. thoracolumbar curve

-Top vertebra of curve
-Bottom vertebra

- Cobb angle $=9^{\circ}$


## Post Traumatic Scoliosis

Top vertebra of curve

-Bottom vertebra

- Cobb angle $=15^{\circ}$
-Apex at L2


## Measuring rotation

Looking from above



## Radiographic Exercise

## Area L; Th; T/L?

## Type ("C/ S")

Direction
Top vertebra?
Bottom vertebra?

Apex?
Rotation?


## Area L; Th; T/L?

## Type ("C/ S")

Direction

Top vertebra?
Bottom vertebra?

Apex

## Area L; Th; T/L?

Type ("C/ S")
Direction

Top vertebra?
Bottom vertebra?

Apex
Rotation


## Lumbar - Alignment



## Pedicle Method for Estimating Rotation



Rotation estimated by pedicle width, pedicle position, and the position of the spinous process.


## Interpedicular Distance

## Lumbar Intervertebral Disc Angles

## Lumbar Lordosis

Norm=
50 to 60 degrees

What's limiting L3/4 extension?

## Baastrup's disease



Baastrup's disease - "kissing spines." The spinous processes of adjacent vertebrae contact and show reactive eburnation. This may lead to impingement of intervening ligaments.

## Sacral Angle

Ferguson angle


## L5/S1 gr. 1 spondylolisthesis (anterolist่hesis)

L4/5 Gr. 1 retrolisthesis
Note angulation of L4/5 is 14 degrees, but should not be more than 8 degrees per segment.

L3/4 Gr. 1 retrolisthesis


Grade IV spondylolisthesis. A 17-year-old boy with chronic low back pain and no neurologic dysfunction. T2: grade IV spond. of L5/S1.
Degenerated disc (arrows) adheres both to L5 and S1, without extrusion Parasagittal view: obliteration of L5-S1 foramen; no compromise of L5 nerve

\title{

Axial CT Myelogram

## L4/5

}

## L4/5

}

## Annulus

## Nudeus

Psoas

Thecal sac with cauda equina Capsule of Sup. articular facet jt.

## Stenosis - Changes in Alignment



## S-w Pintinerequin

Yong-Hing K, Kirkaldy-Willis WH. Orthop Clin North Am 1983;14:491-504

## Starts in ONE joint




## Posture

## Minor changes:

-Alter distribution of stresses
-Put ligaments on slack
-Give rise to pain


- Shifted weight distribution
- Over time; weaker vertebral body




## Loss of Disc Height



Axial CT: L4 vertebra in 62-year-old woman with degenerative spondylolisthesis. Subluxed inferior articular processes of sup. vertebra (arrows) cause central canal and lateral recess stenosis. Note sagittal orientation of right facet joint.

